ChatWarden Batch Processing System
The batch processing system is a critical component of VoxelAI's ChatWarden module, designed to efficiently analyze large volumes of chat messages while maintaining optimal performance and API usage.
Optimized Processing
System Overview
Message Grouping
Groups chat messages into optimized batches for efficient processing.
API Management
Manages API rate limits and quotas automatically for optimal usage.
Timely Detection
Ensures timely violation detection with configurable delay limits.
Server Performance
Prevents server performance impact through efficient processing.
Configuration
Batch Processing Settings
Core configuration for the batch processing system
batch_processing: enabled: true chunk_size: 25 # Messages per batch process_interval_seconds: 20 # Process every 20 seconds max_batch_delay_minutes: 2 # Maximum message delay queue_limit: 200 # Maximum queue size
Key Parameters Explained
25Chunk Size
• Optimized for Gemma 3 27B token limits
• Balances processing speed and accuracy
• Adjustable based on server activity
• Prevents API token overflow
20sProcess Interval
• Regular processing cycles
• Prevents API rate limit issues
• Maintains responsive moderation
• Configurable based on server needs
2mMax Batch Delay
• Maximum time a message waits
• Ensures timely violation detection
• Prevents delayed moderation
• Emergency processing trigger
200Queue Limit
• Prevents memory issues
• Handles traffic spikes
• Auto-scales processing
• Overflow protection
System Components
BatchPunishmentScorer
• Calculates violation scores
• Applies escalation rules
• Determines punishment levels
• Manages violation history
MessageChunker
• Groups messages efficiently
• Optimizes batch sizes
• Handles message priorities
• Manages processing order
ViolationCache
• Stores recent violations
• Tracks escalation patterns
• Manages violation expiry
• Optimizes lookup speed
Processing Flow
Message Reception Flow
Performance Optimization
API Usage
• Automatic model switching
• Rate limit management
• Quota optimization
• Emergency fallback options
Memory Management
• Efficient message storage
• Automatic queue cleanup
• Cache optimization
• Resource monitoring
Server Impact
• Minimal CPU usage
• Controlled memory usage
• Non-blocking operations
• Async processing
Monitoring
Health Metrics
• Queue size
• Processing latency
• API quota usage
• Error rates
Performance Indicators
• Messages per second
• Average processing time
• Batch completion rate
• Queue wait times
Emergency Handling
Queue Overflow
1. Emergency processing mode
2. Increased batch size
3. Reduced analysis depth
4. Priority message handling
API Issues
1. Model fallback
2. Reduced batch size
3. Increased intervals
4. Local cache usage
Best Practices
Configuration
• Adjust based on server size
• Monitor and tune parameters
• Balance speed vs accuracy
• Consider peak hours
Maintenance
• Regular cache cleanup
• Monitor queue size
• Check error logs
• Update thresholds
Troubleshooting
• Check queue status
• Monitor API errors
• Verify rate limits
• Review batch logs